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Abstract. By comparing quantal and semi-classical calculations of optical response, we work out the part
of the splitting of the plasmon spectra which is exclusively due to geometrical effects. We apply the analysis
to the test case Na2+

18 which exhibits an interesting geometry with strong prolate quadrupole deformation
and a pronounced asymmetry in addition. We find a new type of resonance splitting which is due to
geometrical effects but goes beyond the simple and well known deformation splitting.

PACS. 36.40.Vz Optical properties of clusters – 36.40.Gk Plasma and collective effects in clusters
– 36.40.Mr Spectroscopy and geometrical structure of clusters

1 Introduction

The optical response has since long been employed as a
valuable tool to investigate the structural properties of
free metal clusters [1–4]. It delivers also decisive signa-
tures for the deformation of clusters on surfaces [5]. And
it may be extremely worthwhile for tracing the shape evo-
lution during cluster fission [6]. The average plasmon po-
sition as such is dictated by the material and a bit by
the system size. The indicators for the underlying struc-
ture are taken from the detailed pattern of the resonance
spectrum. Two basic mechanisms are known to determine
the spreading of the resonance. There is first a collective
splitting of the resonance into different x-, y-, and z-modes
being uniquely related to the overall quadrupole deforma-
tion of the ionic background in that the eigenfrequencies of
the dipole response roughly scale with the inverse length
of the axes [3]. This has been exploited extensively to mea-
sure the deformation systematics of clusters [7]. There is,
on the other hand, often fine structure in the spectra from
a much different origin, namely a Landau fragmentation
due to coupling of the resonance to energetically close 1ph
states. This is a quantum effect related to the quantal level
density of the system. The Landau fragmentation is often
washed out to a mere broadening of the resonance and the
interplay between collective splitting and Landau damping
determines the actual plasmon width including its temper-
ature dependence [8]. The question remains whether this is

a e-mail: adomps@irsamc2.ups-tlse.fr

all or whether there are other mechanisms for a resonance
splitting conceivable. A positive answer is hinted by the
example of asymmetric fission [6]. The different final frag-
ments carry each their own plasmon frequency which adds
up in the spectrum to multiply split resonances. This fea-
ture presumably continues to more merged configurations
where the clusters are still in contact and the splitting thus
has to be interpreted as a new sort of splitting wich is due
to the peculiar fission shapes. It seems in such situations
that the electron cloud does not vibrate as a whole all over
the cluster but that the collective oscillation rather takes
place on localized “subensembles”.

It is the aim of this paper to search for such geomet-
rical splitting in ground state clusters and to investigate
such an effect in detail. As test case, we consider the pro-
late ground state of Na2+

18 which seems to indicate already
a trimer waiting for asymmetric fission [9]. The theoretical
tool for the study is the comparison of a fully quantal com-
putation of the spectra within the time-dependent local-
density approximation (TDLDA) with its semiclassical
counterpart at the level of the time-dependent Thomas-
Fermi approximation (TDTF) [10]. The TDLDA gives the
full spectrum containing all geometrical splitting effects
together with Landau fragmentation. We treat it here in
a fully fledged time dependent basis with the meanwhile
well tested methods of [11]. The TDTF, on the other hand,
can only cover the geometrical effects and is free from any
1ph fragmentation. This allows to discriminate the geo-
metrical effects. Practically, TDTF is handled with much
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similar numerical techniques [12] which puts the compar-
ison on safe grounds.

The paper is organized as follows. We first briefly out-
line the TDLDA and TDTF formalisms (Sect. 2). We then
discuss as a typical test case the Na2+

18 cluster in its pre-
fission ground state (Sect. 3) and we analyse geometrical
effects from the velocity spectra (Sect. 4). In Section 5
we see how such an analysis provides a tool for under-
standing the optical response. We finally give conclusions
in Section 6.

2 Model and observables

We take TDLDA as starting point for the description of
electron dynamics which represents the simplest version of
time-dependent density functional theory [13] and which
has been used with success in its linearized version [1,4]
as well as in its fully nonlinear form [11,14,15]. In fact,
the high precision of the codes for full TDLDA allows also
computations in the linear regime of small amplitudes [16]
and the coding of full TDLDA is much simpler than of its
linearized version such that it is easier to change approx-
imations and ionic structure. The extraction of spectral
properties from TDLDA is discussed extensively in [11].

Semiclassical approximations can be derived from
TDLDA at various levels. The conceptually simplest one
is the Vlasov-LDA, which has also been used with some
success in cluster physics [17,18]. The Vlasov-LDA never-
theless raises formal and technical difficulties [19]. It turns
out, however, that the dynamical response in metal clus-
ters is to a large extent dominated by the dipole channel
which can be described remarkably well in a TDTF frame
(equivalent to a hydrodynamical picture) [12]. The TDTF
provides a good approximation to the gross features (col-
lective flow) of TDLDA. It furthermore represents the sim-
plest version of time-dependent density-functional theory
and constitutes as such an interesting topic of investiga-
tion. We shall hence rely on this approximation as an ef-
ficient and simple semi-classical approximation. By con-
struction, TDTF misses 1ph effects (quantal effects are
reduced here to the Pauli principle used to evaluate the
kinetic energy at the Thomas-Fermi level). It is thus an
ideal level of approximation which includes the proper ge-
ometrical effects but no detailed fragmentation pattern.

As we aim at discussing the effects of the cluster’s ge-
ometry, we shall include explicit ionic positions by means
of pseudopotentials. We use the local pseudopotentials
of [16] which have been constructed ad hoc to deliver
a fair reproduction of experimental optical response. In
the direct time dependent formalisms used here, the opti-
cal response is accessed to via the dipole moment of the
electronic distribution, which is recorded in time as D(t).
Switching to the frequency domain yields D(ω) which pro-
vides the strength function S(ω) ∝ R(D(ω)), directly
linked to the photoabsorption cross section, and to the
power spectrum P(ω) = |D(ω)|2, for details see [11]. The
TDTF equation is solved by means of the Madelung trans-
form [20], which maps TDTF into an effective time depen-
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Fig. 1. Dipole power spectra in Na2+
18 for plasmon oscillation

along the elongation axis, as computed within TDLDA (full
line) and TDTF (dashed line).

dent Schrödinger equation, which in turn can be numer-
ically solved with the same safe and robust technics as
used in solving TDLDA [12].

3 A typical example

As a typical example of a cluster producing fuzzy opti-
cal response we take the ground state configuration of
the Na2+

18 cluster. This cluster is interesting as it leads
to competing fission channels Na2+

18 → Na+
3 + Na+

15 and
Na2+

18 → Na+
9 + Na+

9 which correspond to basically differ-
ent optical responses [6]. A better understanding of the
(complicated) optical spectra could thus allow to iden-
tify the scission point and even give access to dynamical
effects due to friction [21]. Here we restrict the consider-
ations to the ground state which has already an interest-
ing shape hinting a preformed trimer awaiting its release
in asymmetric fission. The ionic configuration has been
taken over from the cylindrically averaged pseudopoten-
tial scheme (CAPS) [9] and we restrict our analysis to
the longest axis of the cluster, in order to avoid mixing
with the “trivial” deformation splitting through different
modes along different principle axes.

The dipole spectra from TDLDA and TDTF are shown
in Figure 1. The TDLDA spectrum is highly fragmented
but one can identify two groups of peaks, one centered
around ω1 = 2.3 eV and another one around ω2 = 1.9 eV.
The low frequency of both groups reflects the elongated
(prolate) shape of the ionic/electronic configurations. The
TDTF spectrum, on the other hand, displays two well sep-
arated peaks which agree nicely with the two groups of
TDLDA peaks. The detailed substructure of each peak is
lost in TDTF due to the deliberate suppression of quantal
effects in this scheme. Furthermore, the remaining split-
ting of the TDTF spectrum cannot be a simple “principal
axis” effect as we have confined the consideration to the z-
mode alone. Transverse modes are, as can be checked, not
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Fig. 2. Ground state electron density in Na2+
18 , as computed

within Kohn-Sham (thick line) and Thomas-Fermi (thin line).

excited. Still, we obtain the a priori surprising result that
the semi-classical TDTF spectrum splits into two contri-
butions and we expect that this splitting is of some geo-
metrical origin yet to be worked out.

4 Velocity analysis of the optical response

In order to understand the peak splitting in TDTF we
analyse the local distribution of the motion. First, we
check the initial electronic cloud by plotting its density
along z as it emerges from quantal LDA and from semi-
classical Thomas-Fermi approximation. These densities
are shown in Figure 2. Both densities display large oscilla-
tions associated to the ionic positions and they are much
similar to each other which demonstrates that the present
version of TDTF manages to reproduce the smoothness
of a quantal distribution correctly. A remark is in order
here: the Thomas-Fermi approach at lowest level delivers
a density which vanishes abruptly at the classical turning
points. We use here an effective “extended” Thomas-Fermi
scheme which adjusts the Madelung term in the equivalent
Schrödinger equation to cure this defect [12].

Now that we are confident with the TF representation
of the quantal density we can try to analyse in more de-
tail the origin of the peak splitting. For this purpose we
consider the local velocity flow v(r, t). From v(r, t) we ob-
tain by Fourier transform the corresponding velocity spec-
tra Pv(r, ω) = |ṽ(r, ω)|2 which we compare to the dipole
power spectrum P(ω). The velocity spectra provide a lo-
cal picture of the flow and allow to evaluate the degree of
collectivity of the electronic motion. The velocity spectra
of a few selected points ri are plotted in Figure 3, together
with P(ω) for comparison. These points ri have been se-
lected in various space regions in order to see to what
extent they do all oscillate at the same pace. They are
shown in Figure 4 against the ionic configuration. While
r1 and r2 are located at the top of the cluster (z > 8a0),
r3 and r4 stand deep in the core of the ionic structure
(z ' −5a0), and r5 and r6 have been chosen in an inter-
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Fig. 3. Dipole power spectrum P(ω) (upper left) and velocity
power spectra Pv(ri, ω) at various test-points ri in Na2+

18 .
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Fig. 4. Ionic structure of Na2+
18 (diamonds) and test-points

ri (+) chosen to compute the local velocity field. An electron
isodensity line is also shown, with its two typical lengths l1
and l2.

mediate position. The results from this local analysis of
collectivity are quite telling: one observes in Figure 3 that
the two major peaks in P(ω) are very unevenly shared
among the selected points. The vibration at frequency ω1

is much suppressed in Pv(r1, ω) and Pv(r2, ω), all the spec-
tral weight being concentrated around ω2. At the opposite,
ω1 shows up very intensely in Pv(r3, ω) and Pv(r4, ω), ac-
companied by a smaller, yet non negligible contribution
at ω2. Finally, points r5 and r6, located at intermediate
positions, exhaust well balanced velocity spectra, support-
ing the whole picture. Thus, the vibration at ω2 can be
interpreted as a plasmon along the whole cluster, whereas
the ω1 contribution in P(ω) stems from a plasmon re-
stricted to the core part of the cluster. These results were
confirmed by systematically computing Pv(r, ω) at more
than 30 points ri inside the electron cloud. We therefore
associate ω1 and ω2 to the two typical lengths l1 and l2
characterizing the cluster shape along z-axis, as shown
in Figure 4. This view is counterchecked by the relative
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Fig. 5. Dipole power spectra in Na2+
18 for 3 different ion config-

urations: ground state (thick line), compressed (thin line) and
spread (thick dashed line).

value of these two frequencies: the fastest oscillation is
associated to the shortest length. Remind that in a three-
dimensional ellipsoidal cluster, plasmon oscillations along
orthonormal principal axis decouple from each other. This
gives rise to a geometric splitting in P(ω), associated to
the existence of 3 different lengths for the principal axis.
What we are seeing here is a the decoupling of 2 vibra-
tions along one and the same axis, but also of a geometric
origin.

5 Sensitivity to ionic structure

In order to confirm the relevance of the above analysis we
shall now modify the actual ionic positions. This should
allow to better understand the shape dependence of the
response, which might be relevant, for example for tracing
fission pathes. Again, TDTF is particularly suited for that
purpose because is washes out quantal effect, thus provid-
ing filtering on the geometrical effects of optical response.
We consider two arbitrarily deformed configurations built
from the Na2+

18 ground state ionic configuration by mov-
ing ions A and B (Fig. 4) along the z direction, further
inside or outside the cluster. This means that the z-axis l2
of the cluster becomes shortened or elongated, l1 remain-
ing unchanged. This in turn should shift the lowest fre-
quency ω1 up or down. The results obtained from TDTF
computation are plotted in Figure 5 and show the pre-
dicted trends: while the high energy peak at ω1 remains
essentially unaffected, we see a significant redshift of the
low energy energy vibration with increasing l2. From the
original value ω2 = 1.9 eV, it decreases to 1.7 eV in the
spread ionic configuration and reaches 2.1 eV if the cluster
is compressed. Another striking feature from Figure 5 is
the gradual extinction of the ω2 peak with increasing l1.
This is explained as follows: moving ions A and B sepa-
rates more or less a small appendix of the cluster from its

core part. In the limit of very large separation, the col-
lective plasma oscillations along the whole cluster become
meaningless and only the ω1 peak survives.

6 Conclusions

We have investigated the influence of cluster geometry on
the splitting of the plasmon response. Geometrical effects
have been disentangled from particle-hole fragmentation
by comparing quantal TDLDA to semi-classical TDTF
calculations. The simplest geometrical splitting due to
overall quadrupole deformation has been suppressed by
considering the modes only along one axis (here the axial
symmetry axis). Nonetheless, we see a collective splitting
for the ground state of Na2+

18 which is induced by geo-
metrical effects. The cluster shows almost a trimer on its
top and correspondingly there emerge two length scales,
the extension all over the cluster including the top versus
the extension of the “core”. And these two length scales
produce each their own plasmon response. This effect has
been checked further by dilating or compressing the ionic
configuration. The result suggests that similar (or even
more involved) geometrical splittings may appear in other
systems with non-trivial shapes, as e.g. for fissioning clus-
ters or complexes of clusters on surfaces.
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18. L. Féret et al., J. Phys. B 29, 4477 (1996).
19. A. Domps et al., Ann. Phys. (Leipzig) 6, 468 (1997).
20. E. Madelung, Z. Phys. 40, 322 (1927).
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